
1. Convective Organization Depending on Radiative Transfer Solver
3D Radiative Transfer

• TenStream solver [2;3]

• cloud-side illumination
• displaced surface shadow

1D Radiative Transfer

• δ-eddington two-stream solver
• independent column approx.(ICA)
• shadow directly beneath cloud

Virtual photographs of UCLA-LES simulations, as seen from a cruising altitude of 15 km. The simulations either use 3D or 1D Radiative-Transfer calculations and
show differences with respect to cloud size distribution and the organization in cloud streets, the cloud fraction though remains the same (27 %).
Both visualizations are performed with MYSTIC (physically correct MonteCarlo renderer in libRadtran [4;5]).

2. Orientation of Cloud Streets Depends on Solar Azimuth ϕ

Volume rendered perspective on LiquidWaterContent (LWC) and latent and sensible heat flux (L,H).
Cloud-Streets form perpendicular to the sun’s incident angle.

• solar zenith θ = 60◦

• solar azimuth ϕ = 90◦ (East); 180◦ (South)
• horizontal wind u = 0 m s−1

• surface: Cskin = 1 cm water column

3. A Quantitative Measure for Streakiness

2

0

2

4

ho
riz

.d
ist

an
ce

[k
m

]

3D = 90 1D 3D = 180

2 0 2 4
horiz. distance [km]

0.2

0.1

0.0

0.1

0.2

au
to

co
rr.

co
ef

f.

Rc = 0.5

2 0 2 4
horiz. distance [km]

Rc = 1.1

2 0 2 4
horiz. distance [km]

Rc = 1.9

0.2

0.0

0.2

0.4

0.6

0.8

1.0

au
to

co
rr.

co
ef

f.

• Use 2D-AutoCorrelation of
Cloud-Mask

• Search for zeroes along
North-South and East-West
transects

• Ratio of distances measures
degree of organization:

– Rc < 1: North-South
– Rc ≈ 1: random
– Rc > 1: East-West

4. Hypothesis for Mechanism
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A convective plume is fu-
eled by moist and warm
air from adjacent pixels
and is thus more likely to
rise near sun-lit areas (b)
compared to areas in the
vicinity of shadows (a).

This favors the organization of new clouds perpen-
dicular to the solar incidence angle.

5. Results of Parameter Study
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• Purely radiatively forced simulations (no wind)
show to organize clouds perpendicular to the solar
incident

• Simulations with sun in zenith (quasi 1D) clouds
don’t organize

• Ocean-like surfaces diminish radiative influence
• Wind induced cloud streets may be enhanced or

suppressed through radiative feedback (dynamic
surface heterogeneities)
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